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EWEA’s ROT’s

Table E.1: Rule of Thumb Limits for Embedded Capacity

Connection Point

Typical Maximum Generation
Capacity Which May be Connected

Low voltage

A few kW of embedded generation
capacity

Lower levels of the distribution
system (typically 10 or 11 kV)

Up to 2 MW, or possibly more
than 2 MW close to the trans-
former feeding the network

Upper levels of the distribution
system (20 — 35 kV):
existing overhead line or cable

Can take 10 to 15 MW

Upper levels of the distribution
system (20 — 35 kV):
existing bushar in a substation

Is likely to accept up to the rating
of the transformers, which could
he 60 MW or more.

‘Subtransmission’ system
(70 = 150 kV):
existing overhead line or cable

A typical limit is 100 MW

‘Subtransmission’ system
(70 — 150 kV):
existing busbar in a substation

A typical limit would be several
hundred MW

Transmission systems

Generalisations not possible

Source: Wind
Energy the Facts

‘;;:F’N?EI_ National Renewable Energy Laboratory
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Primary Indicator

Ratio of system short circuit power at point of
iInterconnection (PCC) to nominal power of
wind project

Short circuit power: amount of power that will
flow to ground immediately after a three
phase fault.

How “strong” is the PCC vs. how big the wind
project is

25 and up is a “strong” PCC but even 5 is do-
able
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"=  Motivation1: Benefits and
Challenges

Use local production as part of support
— Energy—Ilong term
— Power & Voltage—short term

* Free up large generators

Power system not designed for DG
DG isn’t always designed for power system
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"~ Motivation2: Primary Areas of
Concern for DGWind

* Normal Operation
— Voltage Regulation
— Harmonics
— Flicker

« Contingency Operation

— Fault behavior
e Short circuit current

» Disconnection/reconnection behavior
— Protective equipment coordination
— Islanding behavior

k7
AT,
",';’ MR=L national Renewable Energy Laboratory




=

)i\“ﬂ

|/

Renewable Energy Research Laboratory UqusAthI"?t

DGWind ~= DG

Distributed generation renewable
energy projects are almost like non-
renewable DG but...

No fuel requirement
Not dispatchable (or semi-dispatchable)

Variable output
— Good: designed to cope well with variability
— Bad: variable output can cause headaches
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Water flowing in a pipe
* Direct Current (DC)

— Pressure (psi) : voltage (volts)

— Flow (gpm): current (amps)

— Power (W) : psi X gpm, volts X amps

— Work (J or kWh): power X time

- V=IR 2> P =I° XR

— Higher voltage means much lower losses
 Alternating Current (AC) is similar but...

— Now voltage and current can be out of phase

— New quantity (besides power): reactive power
(VAr)
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" The Magic of AC—reactive power
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" The Magic of AC—reactive power
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" The Magic of AC—reactive power
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The Magic of AC—reactive power

Power [W], Reactive Power [VATr]
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The Magic of AC—reactive power

Power [W], Reactive Power [VATr]
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The Magic of AC—reactive power
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More on Real and Reactive Power

 Real power is power to do work
— Mechanical
— Thermal
— Losses

* Reactive power doesn'’t really do anything,
but...
— Takes up current capacity in line
— Can® be used for regulating voltage
— ‘Foam’ in the beer flowing in pipe analogy
— No actual losses
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Power Factor and VA

Cosine of the phase lag between voltage and
current

— Can vary from 0 to 1 and lagging to leading
— Previous e.g. cos(60°)=0.5 lagging
* Lagging: current is lagging the voltage
Pf=1: voltage and current are in phase
Convention:
— lagging load is consuming VArs

— leading generator is consuming VArs
— Both depress the voltage to some degree!

* VA: how most electrical equip is rated
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Phasors

Not particularly useful on Romulans

“‘removes” the sinusoidal component of a
waveform

Uses Euler's identity

— eX=cos(x)+j*sin(x)
v(t)=V*cos(2*n*f*t)=V*Real(el@ ™)

v(t)= V*Real(e/(Z'7T1))

if i(t)=1*cos(2*n*f*t+5)=I"Real (el T *gid)
Drop the el to see phase relationship
V=V /£0°, I=1£8
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Phasors Actually Make Life Easier
« S=V.0°* | £-6
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Phasors Actually Make Life Easier
« S=V.0°* | £-6
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Phasors Actually Make Life Easier
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A Helpful Graph
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“— Wind Turbine Electrical Power
System

Generators
— Induction
— Synchronous

 Power Electronics
— None (SCIG)
— Partially rated (DFIG)
— Full Rated

J Slootweg 2003

4' "N?-— National Renewable Energy Laboratory
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Power Electronics and Their
Potential

Decouple prime-mover l 'L
(rotor) and “the grid” O ?
[ 3

Originally: increase
energy capture

Then: load reduction

Now: allow fine control
of voltage and current

Flexible AC
Transmission System
technology

Expensive

— Voltage
— Current

Magnitude
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Voltage Regulation

Line voltage to remain within say +/- 5%
(ANSI C84.1)
* During operation
— Fluctuating power causes fluctuating voltage
* During start-up
— Large inrush current can depress local voltage

 Power Electronics equipped turbines can do
a lot to mitigate the fluctuations
— By limiting inrush current
— By manipulating voltage and current phase
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Harmonics

But...power electronics can be a source of
harmonics (other sources, too)

|deal generator is a voltage source with pure
60Hz sine wave

Harmonics are multiples of 60Hz e.g. 120Hz,
180Hz, even up to 3000+Hz

Distort the shape of the waveform
Harmonic voltage source ->harmonic currents
EEE/ANSI 519 specifies tolerable limits

THD is a measure of all of the harmonics
combined
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Why do we care?

e Harmonics cause
problems

Electrical Interference
Additional heating of
equipment

Torque ripple

Reduce power factor
Triplen (3,9,15...)
harmonics end up in

neutral wires of wye
connected equipment
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Flicker
A modulation of the 200—————
60Hz voltage ot 1| H R 9 — Fiekoring]
Often during starts, 100 QH ﬁuh )] M I '

stops, switching ops
Causes lights to flicker

oH

Voltage [V]

-50F

Power electronics can** . M v M ” M “ H _
essentially eliminate 1s0f| u “ H U H u b | -
IEEE/ANSI 519 sets 20 005 01 015 02 025 03 035
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limits
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= 3 Phase Power: An Additional
Layer of Complexity

* 3¢ brings enormous benefits
— Balanced 3¢ doesn’t require™* a neutral
— No torque ripple for motors/generators

* But, it's more complicated than 1¢

* Most 3¢ equipment is rated in terms of
voltage between 2 of the phases: V| |

* V=V \ sqrt(3)«£30°
« 3¢ equipment can be connected in Wye (Star)

or Delta N: T
R, R, ’
R,
N, —"}5;’ N \
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Why do we Care?: Faults

* Most 3¢ distribution systems are either:
— 4 wire multigrounded (i.e. wye based)
— 3 wire ungrounded (i.e. delta based)

« 2 types of faults:
— Short circuit: e.g. line falls on ground
— Open circuit: e.g. fuse opens inadvertently

« Most faults on distribution systems are single
phase short circuits

* 1¢ & 2¢ shorts can be hard on generators--
Imbalance

* 3¢ shorts, though rare, have high currents
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Fault Current

F-Lll'.rtrainsiem Period (5-10

times yated machine current)
Transient Period (2-5 timgs rated

machine current) ¢

Foult Current
Confricution of
Generaior

Final Steady State Current (value depends
on excitation and steady state impedance)

E—.... o000 00OGOIOS

1]
1
I

Induction Generator ¥ S
(no self excitation)

T=10-30
cycles

T=0 T=1to3
cycles cycles

Time

Source: EPRI 1004061 Integrating Distributed..
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Transformer Grounding Compatibility

UMassAmbherst

Winding Configuration
Employed for Interface Between

Is it a Grounded

possible cheice for three-wire,
ungrounded distribution systems.

the Generator and Utility System Sc;-:?unri?:':'?tm Type of Distribution System to Which
Respect to this Transformer Should Normally Be
Utilit Generator Side o Applied
. v (Low voltage U"m}' System
Primary Side . Primary?
side)
Suitable for four-wire, multi-grounded
neutral systems. It may need a neutral
Yes grounding impedance and three-pole
switchgear on the primary of the
. transformer
Suitable for most four-wire, multi-
Only if the grounded neutral systems but the
generator neutral generator must be grounded. May expose
is grounded the generator TI{J severe fault forces—
. - neutral grounding impedance may be
needed.
Mot usually recommended for four-wire,
D No multi-grounded systems. A good choice
* for three-wire, ungrounded distribution
- systems.
Mot usually recommended for four-wire,
D D No multi-grounded neutral systems. A

Source: EPRI 1004061 Integrating Distributed.

k National Renewable Energy Laboratory
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Protective Device Coordination
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» Radial nature of distribution system
allows a simplified protection scheme

— Power (Current) flows from the substation
down to the end of the feeder

— Protection is usually based on time and
current
« Again, power electronics can* alleviate
or mitigate problems—by immediately
(~1 cycle) stopping the flow of current
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"= One e.g. How DG can Interfere

FEEDER

| n -
I Bubstation fault
! current contribution

Fuse Damage Curve

Breaker (Total

/ Clearing Time)

5 cycles

Fuse is damaged before ‘

Time

Circuit breaker clears
fault hefore the fuse is
damaged!

\

circuit breaker clears fault

Fault Level Fault level
Without DG With DG

Source: EPRI 1004061 Fault Current Level
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Nuisance Trips

SUBSTATION
\ Adjacent Feeder
Circuit Breaker . .
— 1
Circuit Breaker FEEDER { +

T Lateral .

This bredker frips fool
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Islanding

« Can be good

— |sland can have

Area supported

power SUpp|y Ealt during\utility outage
Substation —

» Can be very bad e Y P,
: 3%‘3 % ) S \

— Voltage magnitude { f.\
Upstream | |

can fluctuate et = isolating \@ )

device \\_ ,,,,,,,, o

— Reconnection is
tricky

. . S : EPRI 1004061
 Still a tricky problem OHEE
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A Potential Game Changer

M Storage Unit 1 Hypothetical Power Output Storage Unit 2 Hypothetical Power Qutput
1.04

=
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E -
%
]
S ;
oo

« Storage further
decouples rotor and
grid

» Allows:

— Smoothing

» Short-term
* Long-term

— Dispatching of renewable
power :

— Better contingency
operation sk

]
w
(RS T=a]
=
=
[=1
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Some of the Business

* Behind the meter
— DG never generates above your minimum load
— Utility never sees your generator

* Net metering

— Utility sums up all the energy you generate over
say a month

— You are billed only for the kWh you didn’t generate
— Usually for small (i.e. a few kW) projects
« Larger projects
— All sorts of regulations and thresholds
* Your utility, your ISO/RTO, your state

k7
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The Process

* Behind the meter probably doesn’t require
much

— probably need a facility disconnect switch: safety
— You will need to do the analysis for you system
* Net metering

— Various levels: might have an expedited
procedure

— |EEE 1547
« Larger project
— System impact studies, etc and etc...
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The Technical Upshot

| like power electronics, so do many utilities
Can be done without power electronics

Are avalilable in a range of sizes

— 3.6kW Skystream Southwest Windpower
— 100kW Northwind Distributed Energy

- 1.5MW GE

— 2.5MW Liberty Clipper

— others

As time passes, more variants will appear
A good website: www.dsireusa.org
A good starting ref: EPRI 1004061
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